Prototyp piasty wielobiegowej przekładniowej do ręcznych wózków inwalidzkich – wstępna analiza dynamiki ruchu wózka i biomechaniki ciała człowieka

Multi-speed gear hub prototype for manual wheelchairs - preliminary analysis of the dynamics of the trolley movement and biomechanics of the human body

  • Bartosz Wieczorek Politechnika Poznańska, Katedra Podstaw Konstrukcji Maszyn
  • Mateusz Kukla Politechnika Poznańska
  • Łukasz Warguła Politechnika Poznańska
Keywords: wózek inwalidzki, napędzanie, mobilność, biomechanika napedznia


The article analyzes the dynamic aspects of driving a wheelchair equipped with a manual drive. The focus was both on the dynamics of the entire anthropotechnical system as well as on the dynamics of the human body. Moreover, based on the obtained conclusions, two alternative technical solutions for manual wheelchair drives have been proposed.


1. R.A. Cooper, Rehabilitation engineering applied to mobility and manipulation, London UK 1995.
2. T. Winkler, Komputerowo wspomagane projektowanie systemów antropotechnicznych, Warszawa PL 2005.
3. M.L. Boninger, A.M. Koontz, S. A. Sisto, T.A. Dyson-Hudson, M. Chang, R. Price, R.A. Cooper, Pushrim biomechanics and injury prevention in spinal cord injury: Recommendations based on CULP-SCI investigations, Journal of Rehabilitation Research and Development, Vol. 42 No. 3, Pages 9-20
4. P.L. Coe, Jr, Aerodynamic Characteristics of Wheelchairs, NASA Technical Memorandum 80191, USA 1979.
5. R.A. Cooper, D. VanSickle, R.N. Robertson, M.L. Boninger, Unification of the PFA and COP for wheelchair propulsion,18th Annual International Conference of the IEEE, Vol. 2.
6. B.M. Crespo-Ruiz, A.J. Del Ama-Espinosa, Á.M. Gil-Agudo, Relation Between Kinematic Analysis of Wheelchair Propulsion and Wheelchair Functional Basketball Classification. Adapted Physical Activity Quarterly, Vol. 28.
7. K.D. Coutts, Kinematics of sport wheelchair propulsion. Journal of Rehabilitation Research and Development, Vol. 27 No. 1.
8. K.D. Coutts, Dynamic characteristics of a sport wheelchair, Journal of Rehabilitation Research and Development, Vol. 28 No. 1.
9. L.A. Rozendaal, H.E.J. Veeger, L.H.V. van der Woude, The push force pattern in manual wheelchair propulsion as a balance be-tween cost and effect, Journal of Biomechanics, Vol. 36.
10. Ch. Sauret, P. Vaslin, M. Dabonneville, M. Cid, Drag force mechanical power during an actual propulsion cycle on a manual wheelchair, IRBM, Vol. 30, No. 1.
11. P. Schantz, P. Bjorkman, M. Sandberg, E. Andersson, Movement and muscle activity pattern in wheelchair ambulation by persons with para- and tetraplegia, Journal Rehab Med, Vol. 31.
12. L.H.V. van der Woude, H.E.J. Veeger, A.J. Dallmeijer, T.W.J. Janssen, L.A. Rozendaal, Biomechanics and physiology in active manual wheelchair propulsion, Medical Engineering & Physics, Vol. 23.
13. L.H.V. van der Woude, A.J. Dallmeijer, T.W.J. Janssen; D. Veeger, Alternative modes of manual wheelchair ambulation: an overview, American Journal of Physical Medicine & Rehabilitation, Vol. 80, No. 10.
14. AnyBody Modeling System, AnyScript Reference Manual. Version 3.0.1, February 2008.
15. Device Bulletin, Guidance on the stability of wheelchairs. Medicines and Healthcare products Regulatory Agency, London UK 2004.
16. T2RERC: The Rehabilitation Engineering Research Center on Technology Transfer,, pobrano: 03.06.2015.
17. Wieczorek B. Zabłocki M., Piasta przekładniowa wielobiegowa do ręcznych wózków inwalidzkich. Patent PL 223142 do UP RP 2012.
18. Wieczorek B. Zabłocki M., Dźwigniowy system napędowy wózka inwalidzkiego. Patent PL 223141 do UP RP 2012.
Efektywność transportu/Transport efficiency